

Odor Treatment

What is Odor

- Offensive Odors and **smells** contribute to the level of air **pollution** in our local communities.
- They may be harmful to our health and affect the use and enjoyment of property.
- Industrial/Municipal Smells from industrial and Municipal activities are common causes of complaints to local councils.

Sense of Smell

Measurement of Odor

- Olfactometer Test and Odor Panel
- Diluted odorous mixture and an Odor-free gas (as a reference) are presented separately
- They are asked to compare the gases emitted from each sniffing port, along with a confidence level such as guessing, or certainty of their assessment.
- The gas-diluting ratio is then decreased by a factor of two
- The panellists are then asked to repeat their judgment. This continues for a number of dilution levels.
- The responses of the panellists over a range of dilution settings are used to calculate the concentration of the Odor in terms of European Odor units (ouE/m³).
- The main panel calibration gas used is butan-1-ol, which at a certain diluting gives 1 ouE/m³.

Odor Threshold Values of Different Chemicals

Chemical	ppm	mg m ³
Ammonia	46.8	33
Benezene	4.68	15
Dimethylsulphide	0.001	0.0025
Ethyl acrylate	0.00047	0.0019
Ethyl mercaptan	0.001	0.0025
Formaldehyde	1.0	1.2
Hydrogen sulphide	0.00047	0.00066
Methyl mercaptan	0.0021	0.0042
Methyl methacrylate	0.21	0.85
Phenol	0.047	0.18
Toluene	2.14	8.1
Trimethylamine	0.0002	0.0005

Definition: Detection Threshold

Dilution factor at which the sample has a probability of 0.5 of being detected under conditions of the test

Guidance for Industrial Applications

- What is a Percentile?
- Number of Hours of Odor
- Purpose of Percentile

5 ouE/m³ as a 98th Percentile Hourly Average

Percentile	Corresponding Hours
98	175
99	88
99.5	44

Air Dispersion Modelling

Before selecting an appropriate model, the question should be asked as to whether an air dispersion model is required at all. In some cases, it may be possible to scope out an emission point which is clearly insignificant and does not merit a screening modelling assessment (see Section 5.0).

Shown in Figure 2.1 is a brief overview of the steps which are required in order to undertake an air dispersion modelling assessment.

Task 2, model input, is generally the most critical aspect of the modelling process and requires the most time and resources to ensure that the modelling assessment is undertaken successfully.

Figure 2.1 Flowchart of the tasks required when undertaking an air dispersion modelling assessment

Gaussian Distribution

H_s – Height of Stack H_e – Effective Height of Stack [Cone & Thermal Uplift] Q – Stack Exit Velocity

Guidance for Industrial Applications

- Boundary
- Nearest Sensitive Receptor
- The benchmarks are:
 - \odot 1.5 ouE/m³ [98th percentile of the time] for most offensive Odors
 - 3 ouE/m³ [98th percentile of the time] for moderately offensive Odors
 - \circ 6 ouE/m³ [98th percentile of the time] for less offensive Odors

Minimum Ventilation Rates for Odor Control

Process stage	Ventilation rate (larger of)	Comments
Sewage channels	1 to 2 air change per hour (ac/h) for empty volume or 1.25 times aeration rate	The higher extract rate is required where good sealing of covers is not possible. Vent along flow of sewage to minimize air stripping.
Screens	2 ac/h for enclosure volume	
Grit channels	1 ac/h for empty volume or 1.25 times aeration rate	
Primary settlement tanks	1 ac/h for volume above top water level (TWL) if no personnel access.	
	For personnel access this will be dependent on detailed design.	Dependent on detailed design.
Sludge and sludge liquor chambers and wet wells	2 ac/h for empty volume or 1.25 times maximum fill rate	
Buildings housing sewage or sludge processes	Typically, 3 ac/h	Dependent on detailed design. See also SPD E04
Sludge holding tanks (raw, co-settled, imported, blending)	1 ac/h for empty volume or 1.25 times maximum fill rate or 1.25 times the aeration rate	
Picket fence thickeners	1 ac/h for volume above TWL	
Pasteurisation/heat treatment of raw sludge	Off gases only	Where possible, off-gases shall be retained within the system. Operation of units may be seasonal or intermittent.
Secondary digesters & digested sludge holding tanks	If possible, connect to biogas system or to a passive filter.	Off gas is predominantly methane
Mechanical thickening and dewatering	1 to 20 ac/h for container volume	Units are very variable in the degree of containment that can be achieved, leading to H&S problems at some sites. Advice should be sought from the supplier.
Digested sludge press	At least 12 ac/h	As indicated by SPD E04
Sludge cake storage silo	1 ac/h for empty volume or 1 25 times maximum fill rate	

Process Design – Covered Processes

- Ventilation of covered processes shall be set with extraction from the Odor source at the minimum rate necessary to achieve negative pressure under all operating conditions.
- Ventilation rates given are for the containment and conveyance of odorous air only and are not for corrosion control, the provision of a safe working atmosphere or to minimise the build up of explosive gases, which may require higher ventilation rates.
- Rates given assume that there is reasonable sealing of covers with appropriate seals for any required fittings through the covers, and with hatches kept closed. If this is not the case, higher ventilation rates may be required.
- Design of extract points from tanks and channels shall aim to minimise the stripping of Odors, for example, ventilation of covered channels shall ideally draw air along and not against the flow of liquid.

Odor Loads at Ventilation Rates

Odor emission rate (ou_E/s) = Odor concentration (ou_E/m^3) x vented air flow rate (m^3/s)

Process stage	H ₂ S Average (ppm v/v)	H ₂ S Peak (ppm v/v)	Odour Average	Other compounds that may be present
Sewage in channels, preliminary treatment processes, screens, grit channels	5	50	20,000	Trace quantities of volatile compounds from discharges to sewer
PSTs vented for personnel access	1	5	1000	
Raw, co-settled, blended and imported sludge tanks, picket fence thickeners, sludge and sludge liquor chambers, sludge screens.	150	500	1,000,000	 Total mercaptans 20% of H₂S (ppm) Dimethyl sulphide 20% of H₂S (ppm) Volatile fatty acids and their derivatives (e.g. butyrate)
Surplus activated sludge tanks and chambers	5	50	10,000	Carbon dioxide
Pasteurisation/heat treatment/dryer off-gases	500	1000	15,000,000	 Volatile organic compounds Total mercaptans 20% of H₂S (ppm) Dimethyl sulphide 20% of H₂S (ppm)
Digesters and covered secondary digestion tanks (biogas)	1000	2000	2,000,000	 Methane Total mercaptans 20% of H₂S (ppm) Dimethyl sulphide 20% of H₂S (ppm)
Limed sludge (mixers, silo, storage)	Ammonia 150	Ammonia 500	50,000	H ₂ S 1ppm Amines
Composting bays	Ammonia 150	Ammonia 500	150,000	 H₂S 1ppm Amines Vented gas will be warm and humid
Buildings housing raw or digested sludge processes and cake storage	1	5	5000	Methane may be present in off gas from digested sludge dewatering
Buildings housing surplus activated sludge processes	1	5	1000	
Buildings housing sewage processes (inlet buildings)	1	5	1000	
Buildings housing limed or composted sludge	Ammonia	Ammonia 25	10,000	

Process Design - Buildings

- Where there is to be personnel access, design of ventilation systems shall take into account the need to ensure sufficient ventilation to maintain safe working conditions.
- Design incorporating compartmentalisation, purging and access control systems may be considered to minimise ventilation rates whilst maintaining safe working conditions.
- Extraction vents in buildings shall be positioned as close as possible to Odor emitting processes, and not be extracted across working areas and access points.

Odor Treatment Technology - Selection Guide

Composition	Air flow rate (m³/h)			
	<500	500-10,000	10,000-50,000	>50,000
H ₂ S 1-50ppm	Dry chemical or carbon	Biofilter	Biofilter	Biofilter
H ₂ S 50-150ppm	Dry chemical or carbon	Biotrickling tower or bioscrubber	Biotrickling tower or bioscrubber	Biotrickling tower or bioscrubber
H ₂ S 150-300ppm	Dry chemical or carbon	Dilution plus biotrickling tower or bioscrubber	Dilution plus biotrickling tower or bioscrubber	Dilution plus biotrickling tower or bioscrubber
H ₂ S >300ppm	Dry chemical	Catalytic Iron Filtration plus biotrickling tower or bioscrubber	Wet chemical	Wet chemical
Ammonia 1-20	Dry chemical or carbon	Biofilter	Biofilter	Biofilter
Ammonia >20	Dry chemical or carbon	Wet chemical scrubbing stage required	Wet chemical scrubbing stage required	Wet chemical scrubbing stage required
VOCs <1000ppm	Dry chemical or carbon	Biofilter	Biofilter	Biofilter
VOCs >1000ppm	Dry chemical or carbon	Dilution plus biofilter	Dilution plus biofilter	Dilution plus biofilter
Outlet standard less than or equal to 1000 ou⊧/m³	As above	As above plus carbon	As above plus carbon	As above plus carbon

Value Proposition

We offer proven, patented clean air bio-technologies, which provide best-in-class process performance with the lowest utility and life cycle costs.

Plant Locations

Our Proprietary Technologies

Mónafil Mónashell CrumRubber

Our Non- Proprietary Technologies

Scrubbers

Activated Carbon Absorption

- > Venturi
- Packed Tower
- Moving Bed

- Radial
- Deep Bed
- Impregnated Carbon

Biological Filters

- Peat Fibre and Heather Bed
- Lava Rock

Typical Annual Operation Costs

Example: 500 m³/h @ 50 ppm H ₂ S	Media Usage/ Replacement Costs	Water Costs	Power Costs	Total Operational Cost	Typical System Efficiencies
	€	€	€	€	
Wet Chemical Scrubbing	13,360	1,002	402.5	14,764	95 - 98%
Impregnated Activated Carbon	5,010	0	132	5,142	99%
Bioscrubber	668	3,340	218	4,226	75 - 85%
Biofiltration Conventional Media	1,670	1,837	113	3,620	95 - 98%
Mónashell	1,252	417.5	88.5	1,758	>99%

Case Studies

WWTP

Ringsend, Dublin [2014]

- Biofilter 28m³ Dual Stage Mónashell OCU
- Application Lamella Channels.
- Treated Airflow 1,600 m³/hr

Chemical Compound	Inlet	Removal Efficiency
H ₂ S	222 ppm	>99%

WWTP

Cavan Town, Ireland [2015]

- Biofilter 2 No. 45m³ Dual Stage Mónashell OCU
- Application WWTP
- Treated Airflow per OCU 6,700 m³/hr

Chemical Compound	Inlet	Removal Efficiency
H ₂ S	10 ppm	>99%
VOC	70 – 100 mgC/m ³	< 50 mgC/m ³
Odor	50,000 Ou _e /m ³	98%

North Point – Hong Kong

- Hong Kong Main Sewage Pump Station
- Installed 2007
- 3 No. 78m³ Mónashell OCU's
- Air Flow Rate 7,500 CFM
- Inlet H₂S 5ppm
- > 99% Reduction

Paris - France

- Municipal WWTP
- Installed 2009
- 2 No 283m³ Onsite Mónashell OCUs
- Air Flow Rate 44,150 CFM
- Inlet H₂S 15ppm
- 99.5% Reduction

Barcelona - Spain

- Sludge Dryer Emissions
- Installed 2009
- Dual-Pass Onsite 78m³ Mónashell OCU
- Air Flow Rate 31,200 CFM
- Inlet H₂S 10ppm
- > 99% Reduction

Rendering Plant

Avellino, Italy [2012]

- Application Rendering (Beef)
- Product Biofilter
- Treated Airflow 23,450 to 57,500 m³/hr
- Pre-treatment
 - Chemical Scrubber
- Biofilter Size 390m³

Chemical Compound	Inlet	Efficiency
Odor	10,000 Ou/m ³	>90% *

Fishmeal Processing Plant

Mayo, Ireland [1998]

- Application Factory Ventilation Air & Process Gases
- Product Peat Fibre and Heather Biofilter
- Treated Airflow 130,000 m³/hr
- Pre-treatment
 - Bag Filters for Dust Removal
- Biofilter Size 600m³

Chemical Compound	Inlet	Efficiency
Odor [After Pre-treatment]	>65,000 Ou/m ³	>99% *

Rendering Plant

Madrid, Spain [2007]

- Application Rendering (Beef) Cat. 1, Cat. 3
- Product Mónafil
- Treated Airflow 40,000 to 80,000 m³/hr
- Biofilter Size 520m³

Chemical Compound	Inlet	Efficiency
Odor	10,000 Ou/m ³	75 – 95% *
Amines	5 mg/m ³	<0.5 mg/m ³
NH3	20 mg/m ³	<1.0 mg/m ³

Rendering Plant

Cashel, Ireland [1992]

- Application Factory Ventilation Air & Non-condensable Gases
- Product Peat Fibre and Heather Biofilter
- Treated Airflow 25,000 m³/hr
- Pre-treatment of Non-condensable Gases
 - Cyclones for Removal of particulates
 - Packed Tower Acid Scrubber
- Biofilter Size 240m³

Chemical Compound	Inlet	Efficiency
Odor [After Pre-treatment]	10,000 to 50,000 Ou/m ³	99.5% *

Fishmeal Processing Plant

Acona, Italy [2009]

- Application Process Gases from Oven
- Product Mónafil
- Treated Airflow 15,000 m³/hr
- Biofilter Size 2 No. 75m³

Chemical Compound	Inlet	Efficiency
Odor [After Pre-treatment]	7500 Ou/m ³	>97.6% *

Equalization Tank - CA

Lake Wildwood WWPT – Nevada City, CA

H₂S

- Avg inlet: 16ppm
- Peak Inlet: 44ppm
- Avg % Reduction: >99.5%

Flow Splitter - NC

Cary NC

 H_2S

- Avg inlet: 6ppm
- Peak Inlet: 14ppm
- Avg % Reduction: >99.5%

Sludge Treatment - NC

T.Z. Osborne WRF, Greensboro, NC

Emissions from a mixed sludge storage tank – evaluated over 11 months – 3rd party testing by NC State University

- 500cfm H₂S >375 ppm peaks and RSC's
- Avg % Reduction: >99.5% H₂S, 96% Odor as dt

Master Lift Station - FL

Lake Wildwood WWPT – Nevada City, CA

H₂S

- Avg inlet: 41ppm
- Peak Inlet: 125ppm
- Avg % Reduction: >99.5%

FIND AIR-CLEAN AGENT IN CANADA

Address: 35 Kettlepoint Dr. Hamilton, ON L9B2R3, Canada Website: <u>www.wateqcanada.com</u> Email: contact@wateqcanada.com Phone: +1 (647) 879-5152

